611 research outputs found

    First-Principles Approach to Electrorotation Assay

    Full text link
    We have presented a theoretical study of electrorotation assay based on the spectral representation theory. We consider unshelled and shelled spheroidal particles as an extension to spherical ones. From the theoretical analysis, we find that the coating can change the characteristic frequency at which the maximum rotational angular velocity occurs. The shift in the characteristic frequency is attributed to a change in the dielectric properties of the bead-coating complex with respect to those of the uncoated particles. By adjusting the dielectric properties and the thickness of the coating, it is possible to obtain good agreement between our theoretical predictions and the assay data.Comment: 17 pages, 4 eps figures; minor revisions, accepted for publications by J. Phys.: Condens. Matte

    Electrorotation of a pair of spherical particles

    Full text link
    We present a theoretical study of electrorotation (ER) of two spherical particles under the action of a rotating electric field. When the two particles approach and finally touch, the mutual polarization interaction between the particles leads to a change in the dipole moment of the individual particle and hence the ER spectrum, as compared to that of the well-separated particles. The mutual polarization effects are captured by the method of multiple images. From the theoretical analysis, we find that the mutual polarization effects can change the characteristic frequency at which the maximum angular velocity of electrorotation occurs. The numerical results can be understood in the spectral representation theory.Comment: Minor revisions; accepted by Phys. Rev.

    Discovery of a Compact X-ray Source in the LMC Supernova Remnant N23 with Chandra

    Full text link
    An X-ray compact source was discovered with Chandra in a supernova remnant (SNR) N23, located in the Large Magellanic Cloud. The compact source (CXOU J050552.3-680141) is seen in only the hard band (> 2 keV) image of N23, while the soft band image (< 2 keV) shows diffuse emission of the SNR, with an extent of ~60 arcsec times ~80 arcsec. The compact source is located at almost the center of N23, and there is no identifiable object for the source from previous observations at any other wavelength. The source spectrum is best explained by a power-law model with a photon index of 2.2 (1.9-2.7) and an absorption-corrected luminosity of 1.0 x 10^34 ergs s^-1 in the 0.5--10 keV band for a distance of 50 kpc. Neither pulsation nor time variability of the source was detected with this observation with a time resolution of 3.2 sec. These results correspond with those of Hughes et al. (2006) who carried out analysis independently around the same time as our work. Based on information from the best-fit power-law model, we suggest that the source emission is most likely from a rotation-powered pulsar and/or a pulsar wind nebula. It is generally inferred that the progenitor of N23 is a core-collapsed massive star. Based on information from the best-fit power-law model, we suggest that the source emission is most likely from a rotation-powered pulsar and/or a pulsar wind nebula. It is generally inferred that the progenitor of N23 is a core-collapsed massive star.Comment: 16 pages, 5 figures, 1 table, Accepted to Ap

    Bethe-Salpeter equation and a nonperturbative quark-gluon vertex

    Get PDF
    A Ward-Takahashi identity preserving Bethe-Salpeter kernel can always be calculated explicitly from a dressed-quark-gluon vertex whose diagrammatic content is enumerable. We illustrate that fact using a vertex obtained via the complete resummation of dressed-gluon ladders. While this vertex is planar, the vertex-consistent kernel is nonplanar and that is true for any dressed vertex. In an exemplifying model the rainbow-ladder truncation of the gap and Bethe-Salpeter equations yields many results; e.g., pi- and rho-meson masses, that are changed little by including higher-order corrections. Repulsion generated by nonplanar diagrams in the vertex-consistent Bethe-Salpeter kernel for quark-quark scattering is sufficient to guarantee that diquark bound states do not exist.Comment: 16 pages, 12 figures, REVTEX

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis

    Full text link
    Astrometric observations performed by the Gaia Follow-Up Network for Solar System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects first detected by ESA's Gaia mission remain recoverable after their discovery. An observation campaign on the potentially hazardous asteroid (99 942) Apophis was conducted during the asteroid's latest period of visibility, from 12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall performance of the Gaia-FUN-SSO . The 2732 high quality astrometric observations acquired during the Gaia-FUN-SSO campaign were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric reduction process and the precision of the newly obtained measurements are discussed. We compare the residuals of astrometric observations that we obtained using this reduction process to data sets that were individually reduced by observers and accepted by the Minor Planet Center. We obtained 2103 previously unpublished astrometric positions and provide these to the scientific community. Using these data we show that our reduction of this astrometric campaign with a reliable stellar catalog substantially improves the quality of the astrometric results. We present evidence that the new data will help to reduce the orbit uncertainty of Apophis during its close approach in 2029. We show that uncertainties due to geolocations of observing stations, as well as rounding of astrometric data can introduce an unnecessary degradation in the quality of the resulting astrometric positions. Finally, we discuss the impact of our campaign reduction on the recovery process of newly discovered asteroids.Comment: Accepted for publication in A&

    Tonsillar metastasis of gastric cancer

    Get PDF
    Metastasis from a malignant tumor to the palatine tonsils is rare, with only 100 cases reported in the English-language literature. Tonsillar metastasis from a gastric cancer is very rare. We report here a case of palatine tonsillar metastasis after gastric cancer surgery. The patient was an 88-year-old woman who had gastric cancer with abdominal wall invasion. She had undergone a distal gastrectomy with abdominal wall resection and D2 lymph node dissection. Histologically, the tumor was primarily a moderately differentiated adenocarcinoma. It was stage IV (T4, N1, M0) using TNM clinical classification. The patient developed pharyngeal discomfort and abdominal pain and was hospitalized during the follow-up period, 1 year 9 months post-operatively. Multiple lung metastases, Virchow’s lymph node metastasis, and adrenal metastasis were observed. A mass of 2.5 cm was also observed in the right palatine tonsil. It was diagnosed as a moderately differentiated adenocarcinoma, a metastasis from gastric cancer. There was a concern of asphyxiation due to hemorrhage of the tumor; however, the tumor dislodged approximately 10 days after biopsy and tonsillar recurrence was not observed. The patient died 1 year 10 months post-operatively. In the literature there are cases with tonsillar metastases where surgical treatment, radiotherapy, and chemotherapy were performed and extension of survival was seen. Tonsillar metastasis is a form of systemic metastasis of a malignant tumor, and there is a high risk for asphyxiation from tumor dislodgement or hemorrhage. Thus, it is important to recognize tonsillar metastasis as an oncologic emergency

    Measurement of cosmic-ray muon spallation products in a xenon-loaded liquid scintillator with KamLAND

    Full text link
    Cosmic-ray muons produce various radioisotopes when passing through material. These spallation products can be backgrounds for rare event searches such as in solar neutrino, double-beta decay, and dark matter search experiments. The KamLAND-Zen experiment searches for neutrinoless double-beta decay in 745kg of xenon dissolved in liquid scintillator. The experiment includes dead-time-free electronics with a high efficiency for detecting muon-induced neutrons. The production yields of different radioisotopes are measured with a combination of delayed coincidence techniques, newly developed muon reconstruction and xenon spallation identification methods. The observed xenon spallation products are consistent with results from the FLUKA and Geant4 simulation codes
    • 

    corecore